Finite element approximation of dielectrophoretic force driven flow problems
نویسندگان
چکیده
In this paper, we propose a full discretization scheme for the instationary thermal-electro-hydrodynamic (TEHD) Boussinesq equations. These equations model dynamics of non-isothermal, dielectric fluid under influence dielectrophoretic (DEP) force. Our combines an H 1 -conformal finite element method spatial with backward differentiation formula (BDF) time stepping. The resulting allows decoupled solution individual parts multi-physics system. Moreover, derive priori convergence rates that are first and second order in time, depending on how ingredients BDF chosen optimal space. doing so, special care is taken modeling DEP force, since its original form cubic term. obtained error estimates verified by numerical experiments.
منابع مشابه
Finite Element Approximation of Elliptic Dirichlet Optimal Control Problems
In this paper, we present a priori error analysis for the finite element discretization of elliptic optimal control problems, where a finite dimensional control variable enters the Dirichlet boundary conditions. The analysis of finite element approximations of optimization problems governed by partial differential equations is an area of active research, see, e.g., [1, 12, 17, 18]. The consider...
متن کاملFinite element approximation for a class of parameter estimation problems
In this paper, we study adaptive finite element discretisation schemes for a class of parameter estimation problem. We propose to use adaptive multi-meshes in developing efficient algorithms for the estimation problem. We derive equivalent a posteriori error estimators for both the state and the control approximation, which particularly suit an adaptive multi-mesh finite element scheme. The err...
متن کاملFinite element approximation of high-dimensional transport-dominated diffusion problems
High-dimensional partial differential equations with nonnegative characteristic form arise in numerous mathematical models in science. In problems of this kind, the computational challenge of beating the exponential growth of complexity as a function of dimension is exacerbated by the fact that the problem may be transport-dominated. We develop the analysis of stabilised sparse finite element m...
متن کاملFinite element approximation of spectral acoustic problems on curved domains
This paper deals with the finite element approximation of the displacement formulation of the spectral acoustic problem on a curved non convex two-dimensional domain Ω. Convergence and error estimates are proved for Raviart-Thomas elements on a discrete polygonal domainΩh 6⊂ Ω in the framework of the abstract spectral approximation theory. Similar results have been previously proved only for po...
متن کاملFinite element approximation of fractional order elliptic boundary value problems
A finite element numerical method is investigated for fractional order elliptic boundary value problems with homogeneous Dirichlet type boundary conditions. It is pointed out that an appropriate stiffness matrix can be obtained by taking the prescribed fractional power of the stiffness matrix corresponding to the non-fractional elliptic operators. It is proved that this approach, which is also ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ESAIM
سال: 2023
ISSN: ['1270-900X']
DOI: https://doi.org/10.1051/m2an/2023031